
To appear: Proc. of the 1996 IEEE International Computer Performance and Dependability
Symposium, Urbana-Champaign, IL, September 1996.

This material is covered under Distribution Statement A (Approved for Public Release:
Distribution is Unlimited).

Using Time to Improve the Performance of
Coordinated Checkpointing

Nuno Neves W. Kent Fuchs

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

UrbanaJL 61801

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285

Abstract

This paper describes and evaluates a coordinated check-
int protocol that uses time to eliminate several perfor-

mance overheads that are present in traditional protocols.
The time-based protocol does not have to exchange coor-
dination messages, does not need to add information to
the processes' messages, and only accesses stable storage
when checkpoints are saved. This protocol uses a simple
initialization procedure to set checkpoint timers at the dif-
ferent processes. After the initialization, each process saves
its state independently from the other processes. By dis-
allowing processes from sending messages during an in-
terval before the checkpoint time, the protocol prevents in-
transit messages from occurring. Two coordinated check-
point protocols were implemented on a CM5, and their per-
formance was compared using several applications. Re-
sults showed that the time-based protocol outperforms the
two-phase protocol in all applications.

1 Introduction
One effective way to recover distributed systems from

failures is to use checkpointing and rollback recovery. Typ-
ically, a checkpoint protocol periodically saves the state of
the application in stable storage. After a failure, the appli-
cation rolls back to the last state that was saved and starts
its re-execution. Checkpoint protocols are usually divided
into two groups, uncoordinated [1,9,12,18,22] and coor-
dinated [2,5, 10, 11]. In uncoordinated checkpoint proto-
cols, each process determines independently from the oth-
ers the instant when its state should be saved. To avoid the
domino effect, the checkpoint protocol also saves informa-

Nuno Neves was supported in part by the Grant BD-3314-94, spon-
sored by the program PRAXIS XXI. Portugal. This research was sup-
ported in part by the Office of Naval Research under contract N00OI4-
9I-J-1283, and by the National Aeronautics and Space Administration
(NASA) under Grant NASA NAG 1-613, in cooperation with the Illinois
Computer Laboratory for Aerospace Systems and Software (ICLASS).
This work used the CM5 computer system at the National Center for Su-
percomputing Applications, under the Grant CCR940004N.

tion about the messages that were exchanged among pro-
cesses.

In coordinated checkpoint protocols, processes coordi-
nate among themselves to determine which process states
should be included in the application checkpoint. The co-
ordination is necessary to guarantee that the application
checkpoint is consistent and recoverable (section 3.2 ex-
plains these concepts). These protocols usually select one
of the processes, the coordinator, to initiate the creation of
the checkpoints and to ensure that each process saves its
state [6,14,17,19]. This task is accomplished with the ex-
change of a set of messages. The protocol adds information
to each message to detect in-transit messages. Whenever
an in-transit message arrives, the protocol saves it in stable
storage, together with the state of the processes.

Both types of protocols have their own advantages.
However, coordinated protocols have shown better perfor-
mance than uncoordinated protocols when used with par-
allel applications [7]. Additionally, coordinated protocols
do not need any piece-wise determinism assumption about
the execution of the processes [8] and can tolerate failures
that affect multiple processes simultaneously. Neverthe-
less, previous coordinated protocols have several overheads
that should be avoided. In a typical coordinated protocol,
the coordinator has to exchange three messages with each
process. This overhead can become significant if the num-
ber of processes increases and the network is slow. The ad-
dition of information to messages to detect in-transit mes-
sages can also be an important overhead, depending on the
level at which the protocol is implemented. If the protocol
is implemented in a library, the overhead can be consider-
able, because each message might have to be copied. The
third overhead is related to the in-transit messages. A pro-
cess has to make an access to stable storage to save each
in-transit message that it receives.

Previous time-based protocols [5,15,21] have used time
to avoid the first overhead, the exchange of coordination
messages. These protocols assume that processors' clocks
are approximately synchronized, and use time to indirectly

Approved ten jrobiie ISACOüC

DISCLÄIME1 NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

coordinate the checkpoint creation. Each process saves
its state whenever the local clock reaches checkpoint time.
This paper presents a time-based protocol that also uses
time to coordinate the checkpoint creation. However, this
protocol does not rely on synchronized clocks. It uses a
simple initiation procedure to set checkpoint timers at the
different processes, and it saves new checkpoints whenever
the timers expire. Contrary to the other time-based proto-
cols, it also avoids the two other overheads that were men-
tioned previously. This is accomplished by preventing pro-
cesses from sending messages that might become in-transit.
The protocol defines a time interval before the checkpoint
creation time during which processes are not allowed to
send messages. The extent of the interval is proportional
to the maximum message delivery time.

The proposed time-based protocol and a two-phase pro-
tocol were implemented on a CM5, and their performance
was compared using several applications. Our results show
that the time-based protocol outperforms the two-phase
protocol in all applications. They also indicate that the most
important overheads are the storing of the in-transit mes-
sages and the addition of information to messages. The less
important overhead is the exchange of messages during the
checkpoint creation.

2 Related Work

There is a broad literature in the subject of checkpointing
and rollback recovery in distributed systems. Three differ-
ent time-based checkpoint protocols have been previously
proposed [5, 15,21]. All these time-based protocols rely
on approximately synchronized clocks to avoid exchanging
coordination messages during the checkpoint creation. The
protocol proposed by Tong et al. [21] creates checkpoints
periodically, whenever the local clock arrives at the check-
point time. The protocol assumes that a positive acknowl-
edgment retransmission scheme is used to detect lost mes-
sages. A sender process keeps a copy of each message that
it sends until it receives a positive acknowledgment. The
checkpoint of a process includes all messages that have not
been acknowledged. In-transit messages are detected by
adding a checkpoint number to every message and its ac-
knowledgment. A process saves in-transit messages as it
receives them. Cristian and Jahanian [5] also use time to
avoid message coordination. This protocol requires stricter
assumptions about the synchronization of the clocks and as-
sumes that messages' delivery times are bounded with high
probability. However, it only needs to do one access to sta-
ble storage to save the in-transit messages. The protocol
adds to each message the current checkpoint number and
the time of the local clock. The checkpoint number is used
to identify in-transit messages, and the local time is used
to detect violations to the expected bounded delivery time.

Ramanathan and Shin [15] proposed a time-based protocol
in the context of the recovery blocks. This protocol relies
on lock-step synchronized clocks and on the correct estima-
tion of the expected time for a process to reach its accep-
tance tests. In this protocol, time was used to reduce the
probability of blocking and to reduce the number of check-
points that have to be kept.

The protocol presented in this paper does not necessitate
synchronized clocks. It uses a simple initialization proce-
dure to set the checkpoint timers. Contrary to the previous
time-based protocols, it also prevents the existence of in-
transit messages and does not need to add information to
messages. Section 6 shows that these two overheads are
more important than the actual exchange of coordination
messages. The paper also presents the first implementation
and experimental evaluation of time-based checkpointing.

Performance results of coordinated checkpointing have
been presented by some authors in the past [3,6,7, 14].
These papers mainly show experimental results for the total
execution of the checkpoint protocol. Our paper divides the
checkpoint overhead into several categories, and presents
experimental results for these specific categories. The fol-
lowing overheads are considered: message coordination,
addition of information to messages, and in-transit message
storing.

3 Distributed System Model

3.1 System Environment

The system is composed of a set of nodes interconnected
by a network. A node contains a processing unit, a local
memory and a local hardware clock. Clocks do not need to
be synchronized among nodes. However, it is assumed that
local clocks drift from real time with a maximum drift rate,
p. This assumption implies that local clocks have at most an
error of p(e - s) seconds at the end of the real-time interval
[s,e] seconds. The bounded drift rate condition applied to
the local clock of a node n is

(1 - p)(e -s)< C„(e) - Cn(s) < (1 + p){e - s)

where Cn(t) is time returned by the local clock when the
real-time is t. The bounded drift equation can be used to
derive a maximum deviation between the expiration of two
timers. If two timers are started in two nodes exactly at
the same time with the same initial value T, then they will
expire by at most 2pT/(l - p2) seconds from each other
(we will approximate this value by 2pT). Drift rates are in
the order of 10-5 or 10~6 for most quartz clocks that are
available in commodity computers, and for high precision
clocks p is in the order of 10-7 or 10-8 [4].

Every node can store data in stable storage, and this data
can be obtained after a failure by the correct nodes. Nodes
fail according to the fail-stop model. In this model, a node
affected by a fault stops its execution and remains stopped
until recovery is initiated. All correct nodes can determine
which nodes have failed.

Each node provides a computational environment for
one or more processes. Each process executes a program
and exchanges messages with the other processes. Mes-
sages are delivered in any order (no FIFO requirement) and
communication channels can be unreliable, i.e., channels
can lose or duplicate messages. However, if channels are
unreliable, a simple mechanism based on sequence num-
bers and timeouts can be used to guarantee that a process
receives all messages sent to it without duplicates. Mes-
sages are delivered to processes with a bounded delivery
time, td.ma.x- The total time to send a message, transmit the
message through the network, and then receive the message
is smaller than tdmax-

3.2 Recoverable Consistent Checkpoints

A distributed application is executed by a set of pro-
cesses that run on several nodes. The main responsibil-
ity of a coordinated checkpoint protocol is to save global
states of the application. A global state includes the state
of each process belonging to the application and possibly
some messages. A process state contains the send event
send(rrii) if it has sent message mt. A process state con-
tains the receive event rcv(mi) if it has received message
rrii. A generic coordinated protocol should record recov-
erable consistent global states, which satisfy the following
two properties:

Consistency : If the global state includes a process state
containing the receive event rcu(rrii) then another
process state must contain the corresponding send
event send(rrii).

Recoverability : If the global state includes a process state
containing the send event send{mi) but no other pro-
cess state contains the corresponding receive event
rcv(rrii) then the checkpoint protocol must save mes-
sage TTli.

Global states saved by the checkpoint protocol are used
to recover the application from failures that have affected
one or more of its processes. Typically, the application rolls
back to the last stored state and then starts to re-execute.
The external results of the application re-execution should
be equivalent to one of the results of a failure-free exe-
cution. This can only be accomplished if the application
restarts from a global state that could have occurred dur-
ing one execution with no failures [2]. For this reason, the

global state can only contain receive events whose corre-
sponding send events are also included. This characteris-
tic is guaranteed by the consistency property. On the other
hand, global states must include all messages that were in-
transit at checkpoint time. Otherwise, these messages be-
come lost during recovery because they are not re-sent by
the processes. The recoverability property guarantees that
all in-transit messages are available after the failure.

4 Time-Based Checkpoint Protocol

The time-based checkpoint protocol uses an initializa-
tion procedure to synchronize checkpoint timers and a
checkpoint creation procedure to record recoverable con-
sistent states of the application. The checkpoint creation
procedure is executed periodically by each process when-
ever the local checkpoint timer expires. All processing is
done locally without any exchanges of coordination mes-
sages. To guarantee that the consistency property is veri-
fied, the protocol disallows message sends during an inter-
val after the expiration of the checkpoint timer. This inter-
val is not constant, and increases as clocks drift apart. In
an actual implementation, the blocking of message sends
should not bring performance losses, because each process
uses the interval to save its state. Timers are resynchronized
when the interval becomes higher than the time taken to
store a checkpoint. The recoverability property is ensured
by preventing in-transit messages from occurring. The pro-
tocol disallows message sends during an interval before the
checkpoint time. This interval is proportional to the maxi-
mum message delivery time.

The time-based protocol is described in the following
way. First, we present the initialization procedure. Then,
we derive two conditions, one that guarantees the consis-
tency property and another that ensures the recoverability
property.

4.1 Initialization Procedure

The initialization procedure initiates the processes'
checkpoint timers in such a way that timers will expire
within an interval of D seconds (if p = 0). Ideally, D
should be made as small as possible, because that reduces
the periods in which processes are not allowed to send mes-
sages (see next section). The initialization procedure is
executed in three situations: to initialize the checkpoint
protocol when the application starts, to initialize new pro-
cesses that are added during the application execution, and
to resynchronize the checkpoint timers. The resynchro-
nization frequency depends on the value of the drift rate, but
is relatively small.

The initialization procedure selects one of the processes
to be the coordinator (the coordinator is usually the pro-
cess that starts the application). The responsibility of the

Tl . MD - ulmin

Initialization:
Coordinator:

ckpTime = getTime() + T;
setlimer(createNewCkp, ckpTime);
setTimer(s£opS Mesg, ckpT'ime — (D + IT p + tdmax))\
while (TRUE) {

time = getTime();
broadcast(cfcpTrme — thne);
for each(p; € Processes) do receive(p*);
if ((getTime() - time) < (2 * tdjnln + D)) {

broadcast(FALSE);
break;

} else broadcast(TRUE);

}
Process i:

continue = TRUE;
while (continue) {

receive(coord, interval);
time = getTimeO;
send(coord);
receive(coord, continue);

}
ckpTime = time + interval — tdmin',
setTimei(createNewCkp, ckpTime);
setTimer(stopSMesg, ckpTime - {D + ITp + tjmai));

Figure 1: Initialization procedure.

coordinator is to initiate the timers of the other processes.
The coordinator cannot send an absolute time to the other
processes, because clocks are not synchronized. It has to
send a time interval. To calculate the interval inter c, the
coordinator subtracts its local time from the time when its
timer expires. The timer at process p, is set to timer■; =
currentTimei + interc - tdmin (where tdmin is the min-
imum time to deliver a message).

There are several ways to distribute the time interval
among the processes, and their complexity depends on the
system that is being considered. Figure 1 shows one im-
plementation of the initialization procedure. First, the co-
ordinator adds to its local time the checkpoint period T1

to obtain the first checkpoint time, ckpTime. Then, it sets
two timers which will call the functions createNewCkp
and stopSMesg (the next section explains the time values
that were used), and broadcasts the interval. The other pro-
cesses execute the code Process i. This code receives
the interval and initiates two similar timers. Since differ-
ent messages can experience distinct network delays, the
coordinator loops sending the interval until it receives all
answers within a time period smaller than D + 2 * tdmin-

lFot simplicity, checkpoints are created periodically with a constant
period T. In a more general case. T can be different for each checkpoint
as long as processes agree on the same value.

Figure 2: Consistency problem.

This guarantees that checkpoint timers will expire at most
D seconds apart (if p = 0). In the experiments, D was set
to 10 ms, which in most cases allowed the initialization of
the timers in a single iteration.

4.2 Checkpoint Creation Procedure

4.2.1 Consistency

The checkpoint creation procedure has to save application
states that verify the consistency property. Figure 2 shows
an example of an execution that violates the consistency
property. Process Pi saves its state whenever its checkpoint
timer expires at Ti. Since timers are not exactly synchro-
nized, process PI sends a message ml after saving its state,
and PI receives ml before storing its state. The consis-
tency property is violated because the global state contains
recv(ml) but does not include senri(ml). To avoid this
problem, the time-based protocol disallows message sends
during an interval after the checkpoint timer has expired.

Consistency condition : The nth application checkpoint
satisfies the consistency property if no process is al-
lowed to send messages MD - tdmin seconds after
saving its nth checkpoint.

The consistency condition (CC) defines an interval in
which processes can not send messages. This interval is
equal to the maximum deviation, MD, between timers
minus the minimum time required to deliver a message.
Timers in different processes do not expire at the same time,
because they are not exactly synchronized. The maximum
deviation is the maximum time interval that can separate
the expiration of any two timers, and is equal to MD =
D + 2nTp. It depends on two quantities, the initial devia-
tion between timers, D, and the clock drift since the last ini-
tialization, 2nTp (see bounded drift condition in section 3).
The first quantity is constant, but the second one increases
with time. This means that the amount of blocking can
grow with time. However, MD increases slowly because
drift rates are small. For instance, the initialization proce-
dure can be used to start timers with D = 10 ms. If we
assume a clock drift of p = 10~6, then MD is equal to 100
ms after 12.5 hours.

ttliruix Ml} Ml}-ulir />/

1,™ :,:».:,:,: t 1

P2

ml

■Z^ ml
Tl "1*2

! 1
ulmtrx

1^"~1 - No mesg

MO

sends

S>m-utmi'ii

Figure 3: Total blocking interval.

The performance losses introduced by the CC condition
are usually small in real systems. The CC condition does
not prevent processes from continuing their execution. The
CC condition only blocks a process if it attempts to send
messages (actually, the process only has to block if it sends
a synchronous message, because asynchronous messages
can be queued). Also, the blocking interval can be used to
save the processes' state. In current systems, disk accesses
consume a large amount of time, which means that most or
all MD time is used to store the process checkpoint (a typ-
ical process checkpoint takes at least 500 ms).

4.2.2 Recoverability

The easiest way to guarantee the recoverability property
consists of avoiding the creation of messages that might be-
come in-transit. This approach simplifies the implementa-
tion of the protocol during both the failure-free periods and
recovery. The checkpoint protocol does not need to log any
messages or to re-send or re-read messages. However, in
this solution, processes can not send messages during an in-
terval before their timers expire.

Recoverability condition : The nth application check-
point satisfies the recoverability property if no process
is allowed to send messages MD + tdmax seconds be-
fore its timer expires.

The example from Figure 3 can be used to illustrate the
recoverability condition (RC). A message can become in-
transit if it is sent before a process creates its checkpoint
and is received after the other process has saved its state.
In the figure, process PI sends two messages, ml and ml.
Message ml does not have to be stored, but message m2
would have to be saved if process P2 was allowed to send it.
The maximum interval that prevents the existence of mes-
sages like ml is equal to MD + tdmax- The reader should
note that RC does not prohibit processes from continuing
their executions until they start to save their checkpoints.
The process needs to block only if it attempts to send a
synchronous message. If the message can be sent asyn-
chronously, the process simply queues the message and
continues with the computation. The message is sent after
CC is verified.

stopSMesg:
stopSendMesg = TRUE;
setlimer(stopSMesg, ckpTime + T—

{D + 2{CN + l)Tp + tdmax));
createNewCkp:

saveProcessState();
CN = CN + 1;
ckptTime = ckpTime + T;
set1imex(createNewCkp, ckpTime);
if ((getTimeQ - (ckpTime -T)) < =

(Ö + 2(CJV -l)Tp-tdmin))
resynchronizeTimersO;

stopSendMesg = FALSE;
sendQueuedMessages();

Figure 4: Checkpoint creation procedure.

4.2.3 Creation of a Checkpoint

The time-based checkpoint protocol uses the CC and the
RC conditions to create recoverable consistent checkpoints.
The protocol can be implemented using the initialization
procedure from Figure 1 and the checkpoint creation pro-
cedure from Figure 4. The creation procedure uses two
timers: one that expires MD + tdmax seconds before
checkpoint time, and another that expires at checkpoint
time. Whenever the first timer terminates, it calls the func-
tion stopSMesg. This function sets a flag indicating that
messages should be queued, and resets the timer. The func-
tion createNewCkp saves the process state, increments the
checkpoint time by the checkpoint period T, and re-sets the
timer. The variable CN counts the number of checkpoints
that have been created since the last resynchronization.
Then, createNewCkp tests the CC condition. If the con-
dition is not verified, the function resynchronizeTimers
is called to resynchronize the timers. This function sends a
request for synchronization to the coordinator. The resyn-
chronization procedure is similar to the initialization. Be-
fore returning, createNewCkp resets the flag and sends the
messages that were queued.

5 Implementation

The experiments were performed on the CM5 of the Na-
tional Center for Supercomputing Applications (NCSA). In
this machine, each node contains a Sparc Cypress proces-
sor, 32 Mbytes of memory, and a network interface [20].
Nodes are connected by a control network and a data net-
work. The control network supports communication pat-
terns that involve all processing nodes (e.g., synchroniza-
tion). The data network is used for point-to-point commu-
nications among nodes. The data network guarantees to
each node an I/O bandwidth of at least 5Mbytes/sec (usual

bandwidths are between 8 and 10Mbytes/sec).
The time-based protocol and two versions of a two-

phase protocol were implemented in a library that was
linked with the applications. The library logically stays be-
tween the application and the CM5 communication library,
CMMD. Whenever an application attempts to send a mes-
sage, it first passes the message to the library. The library
then executes all the steps required by the checkpoint pro-
tocol, and calls CMMD to send the message. The inverse
procedure occurs on the receive side. This level of indirec-
tion allows a transparent implementation of the checkpoint
protocols.

5.1 Two-Phase Protocol

The two-phase protocol utilized in the experiments is
similar to the protocol that was used in a previous study on
coordinated checkpoint protocols [6]. With the exception
of the bounded delivery times, the time-based and the two-
phase protocols make similar assumptions about the com-
munication channels.

The two-phase protocol keeps in each process a check-
point number counter, CN, that is incremented whenever
a process saves its state. A new application checkpoint
is processed in the following way. The coordinator incre-
ments its CN counter and broadcasts a special start mes-
sage < START,CN >. After receiving the start mes-
sage, a process updates the local CN and saves its state.
Then, it sends a message < SAVED, CN > to the coor-
dinator. The coordinator, after saving its state and receiving
all the < SAVED, CN > messages, broadcasts the mes-
sage < END, CN > to terminate the checkpoint creation.
To detect in-transit messages, the protocol tags each appli-
cation message with the value of the local CN. A process
stores in stable storage all messages that are received with a
CNm smaller than the current CN. A process initiates the
creation of a new checkpoint if a message has a CNm larger
than the current CN. This last scenario can occur because
channels are non-FIFO.

Two versions of two-phase checkpoint protocol were
implemented. The first version follows exactly the proce-
dure just described. In that version, the checkpoint library
has to make an extra copy of each message passed by the
application in order to add or remove the CN tag. The
CMMD library does not provide a gather send function for
noncontiguous buffers with different sizes. If this function
were available, the copy could be avoided by saving in one
buffer the CN tag and in another the message supplied by
the application. In general, the extra copy has to be made
in any system in which gather send functions are not avail-
able.

The second implementation avoids the copy in most
cases, at the cost of making the protocol less general and
less transparent. This implementation uses two bits of the

application message tags to piggyback the CN. In this
case, CN can only take four different values, 0 through 3.
This optimization could only be used in a communication
function that has a tag. In the other cases, it was necessary
to make a copy. This restriction to the CN values requires
the assumption that message delivery times are bounded
and less than three times the checkpoint period. Also, the
programmer can only use the first thirty bits of the message
tag.

5.2 Time-Based Implementation

The time-based protocol makes the assumption that de-
livery times are bounded. This assumption can not be guar-
anteed in a system like the CM5, although it can be approx-
imated. Our implementation uses two characteristics of
the CM5 to approximate bounded delivery times. The first
characteristic is the minimum I/O bandwidth guaranteed to
each node. The second characteristic is the small number
of processes that execute concurrently in each node. The
following formula was used to calculate the maximum de-
livery time:

t<tr,
_ maxMtsaSizt + extraTime

oivl

The first term in the formula corresponds to the maxi-
mum time that a message takes to be transmitted through
the network. It depends on the size of the largest message
that is sent by the application, maxMesgSize, and on the
minimum bandwidth that is guaranteed by the network be-
tween two nodes. The second term is an upper bound on all
the other delays that a message can experience. On some
machines, it is difficult to determine this bound, because of
the scheduling delays (e.g., a message can be received by
the operating system, but the process is only scheduled af-
ter a long period of time). However, in the CM5 this prob-
lem is less important, because only a small number of pro-
cesses are executed concurrently in each processor (usually
only one or two processes). In the experiments, the value of
tdmax was set to 65 ms (25 ms to send the largest message
and 40 ms for the extra time).

5.3 Applications

We used in the experiments six compute-intensive appli-
cations. These applications are either kernels of larger pro-
grams, or complete programs. Each application has differ-
ent characteristics in terms of frequency of communication,
amount of information exchanged, or pattern of communi-
cation. Table 1 presents the inputs that were used for each
application. The applications were the following:

• lu: Performs the LU factorization of a matrix us-
ing the Gaussian elimination with partial pivoting. In
each step, a node computes a column's multipliers and

Table 1: Description of the applications used in the experiments.

Problem
Description Mesg./sec

Messages
KBytes/sec Max. size

lu 50 512x512 matrices. 1763.1 3871.5 36864

mult 40 512x512 matrices. 6.0 200.8 34816

sor 3000 iterations 1024x1024 points. 748.6 3080.5 135432

tsp 10 problems with 20 cities. 143.2 586.6 4096

ga population 1600, 4xl0ö funct. evaluations 19.3 79.6 4096

ising 1200 iterations 1024x1024 grid. 329.2 1348.6 4096

broadcasts them to the other nodes. Next, all nodes up-
date the remaining columns.

• mult: Multiplies several matrices by the same initial
matrix A (A * B{ = d, i = 1, 2,...). Each node starts
with the same copy of a matrix, and calculates a few
contiguous rows of the result matrix.

• sor: Uses the red-black successive overrelaxation it-
erative method to solve the Laplace equation. The
problem is parallelized by giving to each node a cer-
tain number of contiguous rows of the resulting linear
system of equations. In each iteration, a node calcu-
lates its points, and then exchanges the two boundary
rows with two other nodes.

• tsp: Solves the traveling salesperson problem. A
master node keeps a queue with a number of tours that
still have to be evaluated. The other nodes request
tours from the master and try to find a minimum length
tour.

• ga: Is a parallel implementation of the genetic algo-
rithm system GENESIS 5.0 [13]. ga solves a non-
linear optimization problem. This application divides
the initial population among the nodes. A node exe-
cutes the genetic algorithm on its individuals, and af-
ter a few generations, it exchanges a few individuals
with another two nodes.

• ising: Is a parallel simulation model of physical sys-
tems, such as alloys and polymers [16]. ising simu-
lates in two dimensions the spin changes of Spin-glass
particles at different temperatures.

6 Experimental Results

This section describes experiments made on a 32-node
partition of a CM5. The results were obtained using the
average of 3 to 5 experiments. In all runs, the execution

times were on the order of 10 minutes, and the checkpoint
interval was set to 1 minute. We did not use larger ex-
ecution times because we had a limited amount of CM5
time that had to be used for both the code development and
experiments. This, however, does not change our conclu-
sions, because they are mainly comparisons between the
two types of protocols. With larger checkpoint intervals
we expect better performance for the time-based protocol
and the two-phase protocol with the copy optimization, be-
cause they have small overheads between the creation of
the checkpoints. The other version of the two-phase pro-
tocol will perform better or worse depending on the appli-
cation. Since this paper does not propose new ways to re-
duce the checkpoint storing overhead, we do not include
this overhead in the experimental results. We assume that
both checkpoint protocols take the same time to store the
application state.

6.1 Time-Based vs. Two-Phase

This section compares the time-based protocol with the
version of the two-phase protocol without the message copy
optimization. Table 2 presents the various results for ex-
ecutions with and without the checkpoint protocols. It is
possible to observe that the time-based protocol performs
better than the two-phase protocol in all applications. The
time-based protocol shows overheads smaller than 1 %, and
the two-phase protocol has overheads between 1.5% and
13.1%. It is also possible to observe in the table that in
most applications the two protocols took different numbers
of checkpoints (due to the periodicity of the checkpoint
creation). However, even if we calculate the overhead per
checkpoint2, the time-based protocol outperforms the two-
phase protocol.

The time-based protocol achieves good results because
it avoids most overheads while the application is executing.

2The reader should notice that this measure has to be used with cau-
tion, since the overhead of the checkpoint protocol does not occur only
during the checkpoint creation, but also while the application is execut-
ing. In fact, a reasonable pan of the overhead of the two-phase protocol
occurs between the creation of the checkpoints.

Table 2: Experimental results on a 32-node partition of the CM5.

No Ckp.
sec NCkp.

Time-Based
sec % Per Ckp. % NCkp.

Two-Phase
sec % Per Ckp. %

lu 451.5 7 455.5 0.9 0.13 8 510.6 13.1 1.64

mult 418.1 7 420.3 0.5 0.07 7 440.7 5.4 0.77

sor 497.5 8 499.6 0.4 0.05 9 547.7 10.1 1.12

tsp 449.3 7 450.3 0.2 0.03 7 462.9 3.0 0.43

ga 418.0 6 419.1 0.3 0.04 7 424.4 1.5 0.22

ising 467.0 7 471.8 1.0 0.15 8 492.4 5.4 0.68

The major cost of the protocol occurs only when the appli-
cation is about to take its checkpoint. At checkpoint time,
there is one interval in which processes can not send any
messages. However, there is no blocking if the checkpoint
happens to be taken in a computing phase of the process ex-
ecution. Our experiments show that in most cases only a
small number of processes had to block, usually less than
10%. Also, the amount of blocking depends on the instant
when the process attempts to communicate. If the message
is sent at the end of the interval, the process experiences al-
most no blocking.

The size of the blocking interval is proportional to clock
drift and the maximum message delivery time. Since clock
drifts are small, their contribution to the interval is usually
modest. However, the term corresponding to the clock drift
grows with time. As was mentioned previously, timers can
be re-synchronized to solve this problem. It is more diffi-
cult to guarantee that the maximum delivery time will al-
ways be small (or that it even exists). For instance, it de-
pends on the size of the largest message sent by the appli-
cation and on the network bandwidth. The size of the mes-
sages can be kept within reasonable bounds if the check-
point library implements message fragmentation. The ap-
plications that were used did not send messages larger than
135432 bytes, so there was no need to implement fragmen-
tation.

6.2 Distribution of the Overheads

The performance costs introduced by the two-phase pro-
tocol can be divided mainly into message coordination,
addition of information to messages, and in-transit mes-
sage storage. Figure 5 presents, for each application, four
bars showing how the costs have been sub-divided. The
first bar shows the total overhead of the time-based pro-
tocol. The bar "No Copy, No In-transit" corresponds to
the executions of the two-phase implementation with the
no-message-copy optimization. This bar does not contain
the time spent to save the in-transit messages (the function
where the write occurs was commented), which means that

Overh
i sec

I I Ttmc-bii.sod

EH] No Copy. No In-transit

HI Copy. No !n-lrunsit

H Copy. In-triinsH

Figure 5: Time overheads of the checkpoint protocols.

it mainly shows the performance costs associated with the
message coordination. It can be observed that the time-
based protocol outperforms the optimized two-phase pro-
tocol in all applications. However, the overhead of mes-
sage coordination is relatively small. The CM5 has a fast
network, and we have implemented a completely asyn-
chronous message coordination. No process is required to
block while waiting for the coordination messages from the
other processes. This type of implementation removes most
of the message coordination costs, lu is the only applica-
tion that shows a high overhead. In this application, it was
not possible to remove all message copies, lu distributes
the matrix multipliers through the nodes using the broad-
cast primitive of the CMMD. The broadcast function is syn-
chronous and does not associate a tag with the messages. In
this case, it was necessary to make a message copy to add
the CN number. The lu bar contains copying overheads in
addition to the message coordination.

The bar "Copy, No In-transit" corresponds to execu-
tions of the two-phase implementation that makes a mes-
sage copy. This bar does not include the time taken to save
the in-transit messages. It mainly shows the elapsed time

Table 3: In-transit messages.

Number Kbytes

lu 27 393.0
mult 11 405.5
sor 40 324.9
tsp 9 73.7
ga 18 150.2
ising 45 369.6

taken to make the message copies and to coordinate the
checkpoint creation. The difference between the third and
the second bar should be roughly equal to the time wasted
while copying the messages. This time depends heavily on
the application. Applications that exchange many and large
messages have a higher copying overhead (see Table 1).
The time also depends on the communication pattern that
is used by the application, tsp sends a larger amount of in-
formation per second than mult, but it has a smaller copy
overhead. In the mult application, nodes send to the master
the computed rows, and then wait for new rows of another
matrix. The master only distributes new work after receiv-
ing all the previous rows. This means that each message
copy made by the master not only makes the receiving pro-
cess wait, but also all the other processes that are expecting
new rows. Communication is less synchronous on tsp. A
node sends its results to the master, and then receives new
work without having to wait for the other nodes.

The last bar adds to the third bar the time required to save
the in-transit messages. These values are the average of the
3 best execution times of 5 experiments. The number of in-
transit messages that have to be stored can change dramat-
ically from one run to the next. For instance, with the ga
application, there was an execution for which it was neces-
sary to save 207 messages with a total size of 1.7 Mbytes.
These values are quite different from the averages shown
in Table 3. The in-transit storage overhead depends on sev-
eral factors, such as the number of in-transit messages, the
size of the messages, and disk contention while the writes
are being done. It also depends on the type of communi-
cation that is used by the applications. As was mentioned
previously, if several nodes are expecting to receive a mes-
sage from the same node at the same time, a disk access
made by the sender can make several nodes wait. The use
of different communication primitives can change the prob-
ability that in-transit messages will occur. For instance, lu
sends more messages than sor, but has a smaller number
of in-transit messages (see Tables 1 and 3). This is because
lu uses a synchronous broadcast primitive.

7 Conclusions

The paper presented a checkpoint protocol that uses time
to avoid most performance penalties introduced by tradi-
tional coordinated protocols. The protocol does not rely on
approximately synchronized clocks to eliminate the mes-
sage coordination overhead. It uses a simple initialization
procedure to start the checkpoint timers. Contrary to previ-
ous time-based protocols, it also eliminates the overheads
of in-transit message storage and addition of information
to messages. This is accomplished by preventing processes
from sending messages during an interval before the check-
point time.

Experimental results were presented showing that the
time-based protocol outperforms a two-phase protocol. Re-
sults also show that message coordination overhead is less
important than the overhead of writing in-transit messages
to stable storage and the overhead of adding information to
messages.

Acknowledgments

We would like to thank the anonymous referees for their
suggestions. We also wish to thank Jenny Applequist for
her comments that helped to improve the readability of the
paper.

References

[1] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and
W Oberle. Fault tolerance under UNIX. ACM Trans-
actions on Computer Systems, 7(1): 1-24. February
1989.

[2] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems,
3(l):63-75, February 1985.

[3] T. Chiueh and P. Deng. Efficient checkpoint mecha-
nisms for massively parallel machines. In Proceed-
ings of the 26th International Symposium on Fault-
Tolerant Computing, June 1996.

[4] F. Cristian and C. Fetzer. Probabilistic internal clock
synchronization. In Proceedings of the 13th Sympo-
sium on Reliable Distributed Systems, pages 22-3 1,
October 1994.

[5] F. Cristian and F. Jahanian. A timestamp-based check-
pointing protocol for long-lived distributed computa-
tions. In Proceedings of the 10th Symposium on Re-
liable Distributed Systems, pages 12-20, September
1991.

[6] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel.
The performance of consistent checkpointing. In
Proceedings of the 11th Symposium on Reliable Dis-
tributed Systems, pages 39-47, October 1992.

[7] E. N. Elnozahy and W. Zwaenepoel. On the use
and implementation of message logging. In Proceed-
ings of the 24th International Symposium on Fault-
Tolerant Computing, pages 298-307, August 1994.

[8] A. Goldberg, A. Gopal, K. Li, R. Strom, and D. Ba-
con. Transparent recovery of Mach applications.
In Proceedings of the Usenix Mach Workshop, pages
169-184, July 1990.

[9] D. B. Johnson and W. Zwaenepoel. Sender-based
message logging. In Proceedings of the 17th In-
ternational Symposium on Fault-Tolerant Computing,
pages 14-19, July 1987.

[10] J. L. Kim and T. Park. An efficient protocol for
checkpointing recovery in distributed systems. IEEE
Transactions on Parallel and Distributed Systems,
4(8):231-240, August 1993.

[11] R. Koo and S. Toueg. Checkpointing and rollback-
recovery for distributed systems. IEEE Transactions
on Software Engineering, SE-13(1):23-31, January
1987.

[17] L. M. Silva and J. G. Silva. Global checkpointing for
distributed programs. In Proceedings of the 11th Sym-
posium on Reliable Distributed Systems, pages 155-
162, October 1992.

[18] R. E. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Transactions on Computer
Systems, 3(3):204-226, August 1985.

[19] Y. Tamir and C. H. Sequin. Error recovery in multi-
computers using global checkpoints. In Proceedings
of the International Conference on Parallel Process-
ing, pages 32-41, August 1984.

[20] Thinking Machines Corporation. Connection ma-
chine CMS technical summary, November 1993.

[21] Z. Tong, R. Y Kain, and W. T. Tsai. A low overhead
checkpointing and rollback recovery scheme for dis-
tributed systems. In Proceedings of the 8th Sympo-
sium on Reliable Distributed Systems, pages 12-20.
October 1989.

[22] Y.-M. Wang and W. K. Fuchs. Lazy checkpoint co-
ordination for bounding rollback propagation. In
Proceedings of the 12th Symposium on Reliable Dis-
tributed Systems, pages 86-95, October 1993.

[12] N. Neves, M. Castro, and R Guedes. A checkpoint
protocol for an entry consistent shared memory sys-
tem. In Proceedings of the Thirteenth Annual Sympo-
sium on Principles of Distributed Systems, pages 121-
129, August 1994.

[13] N. Neves, A.-T. Nguyen, and E. L. Torres. A study of
a non-linear optimization problem using a distributed
genetic algorithm. In Proceedings of the International
Conference on Parallel Processing, August 1996.

[14] J. S. Plank. Efficient checkpointing on MIMD ar-
chitectures. Ph.D. thesis, Princeton University, June
1993.

[15] P. Ramanathan and K. G. Shin. Use of common time
base for checkpointing and rollback recovery in a dis-
tributed system. IEEE Transactions on Software En-
gineering, 19(6):571-583,June 1993.

[16] J. G. Silva, J. Carreira, H. Madeira, D. Costa, and
F. Moreira. Experimental assessment of parallel sys-
tems. In Proceedings of the 26th International Sym-
posium on Fault-Tolerant Computing, June 1996.

